ESSEC METALAB

RESEARCH

CROWDSOURCED HUMANITARIAN RELIEF VEHICLE ROUTING PROBLEM

[ARTICLE] This paper introduces a crowdsourced humanitarian relief vehicle routing problem, proposes an Iterated Local Search heuristic to efficiently solve it, and evaluates its performance through extensive computational studies on both random and real city-shaped instances.

by Claudia ARCHETTI (ESSEC Business School),  Javaiz PARAPPATHODI

During recent years, the number and scale of natural disasters have been increasing steadily. In view of this, a crucial aspect of humanitarian logistics is ensuring that relief materials reach the needy in an efficient and quick manner. Crowdsourcing is a concept that has been gaining momentum over the last few years as a highly potential tool for improving disaster response. This paper defines a crowdsourced humanitarian relief vehicle routing problem and proposes a heuristic to generate good quality solutions in reasonable time. The algorithm is based on an Iterated Local Search (ILS) scheme. Extensive computational studies are done on randomly generated instances to gain insights on the performance of the heuristic and on the impact of the problem features on solution quality. In addition, instances mimicking the shape of real cities are generated and results are analyzed.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.