ESSEC METALAB

RESEARCH

VARIABLE SELECTION, MONOTONE LIKELIHOOD RATIO AND GROUP SPARSITY

[ARTICLE] This study explores methodologies for selecting crucial variables amidst a multitude of options. It presents both optimal solutions and practical approximations, assessing their efficacy across diverse contexts through empirical validation.

by Mohamed Ndaoud (ESSEC Business School), Cristina Butucea, Enno Mammen, Alexandre B. Tsybakov

In the pivotal variable selection problem, we derive the exact nonasymptotic minimax selector over the class of all s-sparse vectors, which is also the Bayes selector with respect to the uniform prior. While this optimal selector is, in general, not realizable in polynomial time, we show that its tractable counterpart (the scan selector) attains the minimax expected Hamming risk to within factor 2, and is also exact minimax with respect to the probability of wrong recovery. As a consequence, we establish explicit lower bounds under the monotone likelihood ratio property and we obtain a tight characterization of the minimax risk in terms of the best separable selector risk. We apply these general results to derive necessary and sufficient conditions of exact and almost full recovery in the location model with light tail distributions and in the problem of group variable selection under Gaussian noise and under more general anisotropic sub-Gaussian noise. Numerical results illustrate our theoretical findings.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.