ESSEC METALAB

RESEARCH

A BRANCH-AND-PRICE ALGORITHM FOR THE MINIMUM SUM COLORING PROBLEM

[ARTICLE] This paper studies the Minimum Sum Coloring Problem (MSCP) and introduces the first branch-and-price algorithm to solve it to proven optimality.

by Diego Delle Donne (ESSEC Business School), Fabio Furini, Enrico Malaguti, Roberto Wolfler Calvo

A proper coloring of a given graph is an assignment of a positive integer number (color) to each vertex such that two adjacent vertices receive different colors. This paper studies the Minimum Sum Coloring Problem (MSCP), which asks for finding a proper coloring while minimizing the sum of the colors assigned to the vertices. We propose the first branch-and-price algorithm to solve the MSCP to proven optimality. The newly developed exact approach is based on an Integer Programming (IP) formulation with an exponential number of variables which is tackled by column generation. We present extensive computational experiments, on synthetic and benchmark DIMACS graphs from the literature, to compare the performance of our newly developed branch-and-price algorithm against three compact IP formulations. On synthetic graphs, our algorithm outperforms the compact formulations in terms of: (i) number of solved instances, (ii) running times and (iii) exit gaps obtained when optimality is not achieved. For the DIMACS instances, our algorithm is competitive with the best compact formulation and provides very strong dual bounds.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.