This paper addresses a variant of the classical Traveling Salesman Problem known as Close-Enough Traveling Salesman Problem . In this problem, there is a set of nodes (customers, targets), each of them associated with a region, denoted as neighborhood, that contains it. The goal is to determine the shortest tour that visits all the nodes, where a node is visited when the tour traverses or reaches the region associated with the node. We propose a genetic algorithm (GA), which uses several strategies to optimize the tour, such as 2opt, second-order cone programming, and a bisection algorithm. The proposed approach is tested on 62 benchmark instances.