ESSEC METALAB

RESEARCH

A GENETIC ALGORITHM FOR THE CLOSE-ENOUGH TRAVELING SALESMAN PROBLEM WITH APPLICATION TO SOLAR PANELS DIAGNOSTIC RECONNAISSANCE

[ARTICLE] This paper presents a genetic algorithm for the Close-Enough Traveling Salesman Problem, aiming to find the shortest tour that visits nodes by reaching associated regions, and tests the algorithm on 62 benchmark instances.

by Claudia ARCHETTI (ESSEC Business School),  Andrea DI PLACIDO, Carmine CERRONE

This paper addresses a variant of the classical Traveling Salesman Problem known as Close-Enough Traveling Salesman Problem . In this problem, there is a set of nodes (customers, targets), each of them associated with a region, denoted as neighborhood, that contains it. The goal is to determine the shortest tour that visits all the nodes, where a node is visited when the tour traverses or reaches the region associated with the node. We propose a genetic algorithm (GA), which uses several strategies to optimize the tour, such as 2opt, second-order cone programming, and a bisection algorithm. The proposed approach is tested on 62 benchmark instances.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.