ESSEC METALAB

RESEARCH

A MOM-BASED ENSEMBLE METHOD FOR ROBUSTNESS, SUBSAMPLING AND HYPERPARAMETER TUNING

[ARTICLE] This paper constructs a robust alternative to cross-validation for hyperparameter tuning and model selection using a median-of-means principle.

by Guillaume Lecué (ESSEC Business School), Joon Kwon, Matthieu Lerasle

Hyperparameter tuning and model selection are important steps in machine learning. Unfortunately, classical hyperparameter calibration and model selection procedures are sensitive to outliers and heavy-tailed data. In this work, we construct a selection procedure which can be seen as a robust alternative to cross-validation and is based on a median-of-means principle. Using this procedure, we also build an ensemble method which, trained with algorithms and corrupted heavy-tailed data, selects an algorithm, trains it with a large uncorrupted subsample and automatically tunes its hyperparameters. In particular, the approach can transform any procedure into a robust to outliers and to heavy-tailed data procedure while tuning automatically its hyperparameters.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.