ESSEC METALAB

RESEARCH

AN INVITATION TO SEQUENTIAL MONTE CARLO SAMPLERS

[ARTICLE] This article explains sequential Monte Carlo samplers, which blend Markov chain Monte Carlo and importance sampling techniques, highlighting their origins, scalable nature, and underutilization in statistics despite their advantages in sequential inference and parallel processing.

by Jeremy HENG, Pierre JACOB (ESSEC Business School),  Chenguang DAI, Nick WHITELEY

Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.