ESSEC METALAB

RESEARCH

ESTIMATION OF COPULAS VIA MAXIMUM MEAN DISCREPANCY

[ARTICLE] This research proposes a new method (MMD) for analyzing data modeled by "copulas," which are statistical tools used to understand relationships between variables. This method offers improved stability and accuracy, especially when dealing with outliers or unusual data points.

by Pierre Alquier (ESSEC Business School), Badr-Eddine Chérief-Abdellatif, Alexis Derumigny, Jean-David Fermanian

This article deals with robust inference for parametric copula models. Estimation using canonical maximum likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the maximum mean discrepancy (MMD) principle. We derive nonasymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on [0,1]d, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available. Supplementary materials for this article are available online.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.