ESSEC METALAB

RESEARCH

FINITE SAMPLE PROPERTIES OF PARAMETRIC MMD ESTIMATION: ROBUSTNESS TO MISSPECIFICATION AND DEPENDENCE

[ARTICLE] This paper addresses the problem of universal estimation, aiming to design an estimator that converges to the best approximation of an unknown data-generating distribution without assumptions on the distribution.

by Badr-Eddine CHERIEF-ABDELLATIF, Pierre ALQUIER (ESSEC Business School)

Many works in statistics aim at designing a universal estimation procedure, that is, an estimator that would converge to the best approximation of the (unknown) data generating distribution in a model, without any assumption on this distribution. This question is of major interest, in particular because the universality property leads to the robustness of the estimator. In this paper, we tackle the problem of universal estimation using a minimum distance estimator presented in (Briol et al. (2019)) based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.