ESSEC METALAB

RESEARCH

IMPROVED CLUSTERING ALGORITHMS FOR THE BIPARTITE STOCHASTIC BLOCK MODEL

[ARTICLE] This paper establishes improved conditions for exact and almost full recovery of node partitioning in the Bipartite Stochastic Block Model (BSBM) using polynomial time algorithms.

by Mohamed Ndaoud (ESSEC Business School), Suzanne SigallaAlexandre B. Tsybakov

We establish sufficient conditions of exact and almost full recovery of the node partition in Bipartite Stochastic Block Model (BSBM) using polynomial time algorithms. First, we improve upon the known conditions of almost full recovery by spectral clustering algorithms in BSBM. Next, we propose a new computationally simple and fast procedure achieving exact recovery under milder conditions than the state of the art. Namely, if the vertex sets V1 and V2 in BSBM have sizes n1 and n2, we show that the condition p=Ω(max((logn1/n1n2)^(1/2), logn1n2)) on the edge intensity p is sufficient for exact recovery witin V1. This condition exhibits an elbow at n2≍n1logn1 between the low-dimensional and high-dimensional regimes. The suggested procedure is a variant of Lloyd's iterations initialized with a well-chosen spectral estimator leading to what we expect to be the optimal condition for exact recovery in BSBM. The optimality conjecture is supported by showing that, for a supervised oracle procedure, such a condition is necessary to achieve exact recovery. The key elements of the proof techniques are different from classical community detection tools on random graphs. Numerical studies confirm our theory, and show that the suggested algorithm is both very fast and achieves almost the same performance as the supervised oracle. Finally, using the connection between planted satisfiability problems and the BSBM, we improve upon the sufficient number of clauses to completely recover the planted assignment.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.