ESSEC METALAB

RESEARCH

LSTM PATH-MAKER: A NEW LSTM-BASED STRATEGY FOR THE MULTI-AGENT PATROLLING

[ARTICLE] This paper introduces LSTM-Path-Maker, an LSTM-based multiagent patrolling strategy that outperforms reactive strategies by efficiently patrolling areas without communication.

by Amal EL FALLAH SEGHROUCHNI (ESSEC Business School),  Mehdi William Othmani-Guibourg, Jean-Loup Farges

For over a decade, the multi-agent patrol task has received a growing attention from the multi-agent community due to its wide range of potential applications. However, the existing patrolling-specific algorithms based on deep learning algorithms are still in preliminary stages. In this paper, we propose to integrate a recurrent neural network as part of a multi-agent patrolling strategy. Hence we proposed a formal model of an LSTM-based agent strategy named LSTM Path Maker. The LSTM network is trained over simulation traces of a coordinated strategy, then embedded on each agent of the new strategy to patrol efficiently without communicating. Finally this new LSTM-based strategy is evaluated in simulation and compared with two representative strategies: a coordinated one and a reactive one. Preliminary results indicate that the proposed strategy is better than the reactive.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.