ESSEC METALAB

RESEARCH

MAXIMUM LIKELIHOOD ESTIMATION OF SPARSE NETWORKS WITH MISSING OBSERVATIONS

[ARTICLE] The authors study sparse positive graphon estimation with missing observations.

by Olga Klopp (ESSEC Business School), Solenne Gaucher

Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the inhomogeneous random graph model with missing observations. Using the Stochastic Block Model as a parametric proxy, we bound the risk of the maximum likelihood estimator of network connections probabilities, and show that it is minimax optimal. Moreover, we show that our estimator can be efficiently approximated using tractable variational methods, and thus used in practice.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.