ESSEC METALAB

RESEARCH

REAL-TIME MACRO INFORMATION AND BOND RETURN PREDICTABILITY: DOES DEEP LEARNING HELP?

[ARTICLE] This paper examines whether deep/machine learning can help find any statistical and/or economic evidence of out-of-sample bond return predictability when real-time, instead of fully-revised, macro variables are taken as predictors.

by Andras Fulop (ESSEC Business School), Guanhao Feng, Yinghua Fan, Junye Li

First, when using pure real-time macro information alone, the authors find that deep learning cannot help find any statistical evidence for forecasting both non-overlapping and overlapping excess bond returns. In contrast, some machine learning models can help find some statistical evidence for forecasting overlapping excess bond returns.

Second, when using both pure real-time macro information and yield curve information, they find that deep learning performs well for forecasting medium- and long-maturity overlapping excess bond returns, but such predictability is dominantly driven by yield curve information.

Third, all statistical evidence of predictability is much weaker than that found from using fully-revised macro data and generates minimal economic gains for a mean-variance investor, regardless of her level of risk aversion and whether she can take short positions.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.