ESSEC METALAB

RESEARCH

SIMULTANEOUS DIMENSION REDUCTION AND CLUSTERING VIA THE NMF-EM ALGORITHM

[ARTICLE] This paper proposes a new parameter constraint for non-Gaussian mixture models using a small dictionary of elements.

by Pierre Alquier (ESSEC Business School), Léna Carel

Mixture models are among the most popular tools for clustering. However, when the dimension and the number of clusters is large, the estimation of the clusters become challenging, as well as their interpretation. Restriction on the parameters can be used to reduce the dimension. An example is given by mixture of factor analyzers for Gaussian mixtures. The extension of MFA to non-Gaussian mixtures is not straightforward. We propose a new constraint for parameters in non-Gaussian mixture model: the K components parameters are combinations of elements from a small dictionary, say H elements, with H≪K. Including a nonnegative matrix factorization (NMF) in the EM algorithm allows us to simultaneously estimate the dictionary and the parameters of the mixture. We propose the acronym NMF-EM for this algorithm, implemented in the R package nmfem. This original approach is motivated by passengers clustering from ticketing data: we apply NMF-EM to data from two Transdev public transport networks. In this case, the words are easily interpreted as typical slots in a timetable.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.