ESSEC METALAB

RESEARCH

TIGHT RISK BOUND FOR HIGH DIMENSIONAL TIME SERIES COMPLETION

[ARTICLE] This paper addresses the application of low-rank matrix completion to multivariate, partially observed time series, traditionally designed for independent data.

by Pierre ALQUIER (ESSEC Business School), Nicolas MARIE, Amélie ROSIER

Initially designed for independent datas, low-rank matrix completion was successfully applied in many domains to the reconstruction of partially observed high-dimensional time series. However, there is a lack of theory to support the application of these methods to dependent datas. In this paper, we propose a general model for multivariate, partially observed time series. We show that the least-square method with a rank penalty leads to reconstruction error of the same order as for independent datas. Moreover, when the time series has some additional properties such as periodicity or smoothness, the rate can actually be faster than in the independent case.

[Please read the research paper here]

Research list
arrow-right
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.